Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 173: 199-216, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918471

RESUMO

We examined the effect of a nanoscale titanium surface topography (D) versus two hybrid micro/nanoscale topographies (B and OS) on adherent mesenchymal stem cells (MSCs) and bone marrow derived macrophages (BMMs) function in cell culture and in vivo. In the in vitro study, compared to OS and B surfaces, D surface induced earlier and greater cell spreading, and earlier and profound mRNA expression of RUNX2, Osterix and BMP2 in MSCs. D surface induced earlier and higher expression of RUNX2 and BMP2 and lower expression of inflammatory genes in implant adherent cells in vivo. Measurement of osteogenesis at implant surfaces showed greater bone-to-implant contact at D versus OS surfaces after 21 days. We explored the cell population on the D and OS implant surfaces 24 h after placement using single-cell RNA sequencing and identified distinct cell clusters including macrophages, neutrophils and B cells. D surface induced lower expression and earlier reduction of inflammatory genes expression in BMMs in vitro. BMMs on D, B and OS surfaces demonstrated a marked increase of BMP2 expression after 1 and 3 days, and this increase was significantly higher on D surface at day 3. Our data implicates a dynamic process that may be influenced by nanotopography at multiple stages of osseointegration including initial immunomodulation, recruitment of MSCs and later osteoblastic differentiation leading to bone matrix production and mineralization. The results suggest that a nanoscale topography (D) favorably modulates adherent macrophage polarization toward anti-inflammatory and regenerative phenotypes and promotes the osteoinductive phenotype of adherent mesenchymal stem cells. STATEMENT OF SIGNIFICANCE: Our manuscript contains original data developed to define effects of a novel nanotopography on the process of osseointegration at the cell and tissue level.  Few studies have compared the effects of a nanoscale surface versus the more typical hybrid micro/nano-scale surfaces used today. We have utilized single-cell RNA sequencing for the first time to identify earliest cell populations on implant surfaces in vivo. We provide data indicating that the nanoscale surface acts upon both osteoprogenitor and immune cell (macrophages) to alter the process of bone formation in a surface-specific manner. This work represents new observations regarding osseointegration and immunomodulation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osseointegração , Diferenciação Celular , Osteogênese , Expressão Gênica , Propriedades de Superfície , Titânio/farmacologia
2.
Int J Oral Maxillofac Implants ; 38(6): 1175-1181, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085749

RESUMO

PURPOSE: To investigate bone regeneration among three different bone graft materials in a rat calvarum model. MATERIALS AND METHODS: A total of 24 rats had two 5-mm defects placed per calvarial. Rats were divided into four groups: bovine xenograft (XG), demineralized bone matrix (DBM), mineralized bone graft (MBG), and collagen membrane control (CC). Within each group, samples were collected at two time points: 4 weeks (T4) and 8 weeks (T8). Bone regeneration was assessed by microcomputed tomography (micro-CT) imaging and was analyzed using MATLAB software. Additionally, the fixed samples were subsequently demineralized for immunohistochemistry and histomorphometry. Slides were mounted and stained with hematoxylin and eosin (H&E) stain as well as bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (RUNX2) markers. The numbers of positive cells/area were calculated for each group and analyzed. RESULTS: At 4 weeks, DBM showed low mineral density (7.7%) compared to the control (25.2%), but increased dramatically at 8 weeks (DBM, T8 = 27.6%; CC, T8 = 27.2%). Xenograft material showed an increase in mineral desnity between T4 and T8 (XG, T4 = 25.0%; XG, T8 = 32.3%). MBG remained consistent over the 8-week trial period (MBG, T4 = 30.4%; MBG, T8 = 30.4%). BMP-2 expression was present in cells adherent to all graft materials. RUNX2 expression was also observed in cells adherent to all graft materials, indicating that during the 4- to 8-week healing period, all materials supported osteogenesis. CONCLUSIONS: Compared to other materials, the DBM had high osteoinductive properties during the 4- to 8-week time period based on increased mineral content. All materials were associated with immunohistologic evidence of osteogenesis in the rat calvarial defect model.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Humanos , Ratos , Animais , Bovinos , Matriz Óssea/química , Matriz Óssea/transplante , Microtomografia por Raio-X , Regeneração Óssea , Minerais/uso terapêutico
3.
Front Cell Dev Biol ; 11: 1240920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020894

RESUMO

The migration of mandibular fibrochondrocytes is important for the development of the mandible, the homeostasis of the mandibular cartilage, and for the capacity of the tissue to respond to injury. Mandibular fibrochondrocytes have to overcome formidable obstacles during migration including a dense and heterogeneous three-dimensional matrix. Guiding the direction of cell migration and commitment to a migratory phenotype in this microenvironment necessitates a multivalent response to chemotactic and extracellular matrix-mediated stimuli. One of the key matrix components in the cartilage of the temporomandibular joint is type VI collagen. Neuron/glial antigen 2 (NG2/CSPG4) is a transmembrane proteoglycan that binds with collagen VI and has been implicated in a wide range of cell behaviors including cell migration, motility, adhesion, and proliferation. While NG2/CSPG4 has been shown to be a key regulator of mandibular cartilage homeostasis, its role in the migration of mandibular fibrochondrocytes during normal and cell stress conditions has yet to be resolved. Here, we address this gap in knowledge by characterizing NG2/CSPG4-dependent migration in mandibular fibrochondrocytes using primary mandibular fibrochondrocytes isolated from control and full length NG2/CSPG4 knockout mice, in primary mandibular fibrochondrocytes isolated from NG2|DsRed reporter mice and in an immortalized mandibular fibrochondrocyte cell line with a mutated NG2/CSPG4 ectodomain. All three cells demonstrate similar results, with loss of the full length or truncated NG2/CSPG4 increasing the rate of cell migration in serum starvation/cell stress conditions. These findings clearly implicate NG2/CSPG4 as a key molecule in the regulation of cell migration in mandibular fibrochondrocytes in normal and cell stress conditions, underscoring the role of NG2/CSPG4 as a mechanosensitive signaling hub in the mandibular cartilage.

4.
J Clin Med ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373839

RESUMO

Global DNA hypermethylation and mitochondrial dysfunction are reported to be associated with the development of mild cognitive decline (MCI). The present study aims to generate preliminary data that connect the above association with post-surgical coronary artery bypass grafting (CABG) cognitive decline in patients. Data were collected from 70 CABG patients and 25 age-matched controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MOCA) test on day 1 (before surgery) and on the day of discharge. Similarly, blood was collected before and one day after the CABG procedure for mitochondrial functional analysis and expression of DNA methylation genes. Test analysis score suggested 31 (44%) patients had MCI before discharge. These patients showed a significant decrease in complex I activity and an increase in malondialdehyde levels (p < 0.001) from the control blood samples. Post-surgical samples showed a significant reduction in blood MT-ND1 mRNA expression from control and from pre-surgical samples (p < 0.005), along with elevated DNMT1 gene expression (p < 0.047), with an insignificant increase in TET1 and TET3 gene expression. Correlation analysis showed a significant positive relation between cognitive decline and elevated blood DNMT1 and declined blood complex I activity, signifying that cognitive decline experienced by post-surgical CABG patients is associated with increased DNMT1 expression and declined complex I activity. Based on the data, we conclude that both DNA hypermethylation and mitochondrial dysfunction are associated with post-CABG MCI, where the former is negatively correlated, and the latter is positively correlated with post-surgical MCI in CABG cases. Additionally, a multimarker approach that comprises MOCA, DNA methylation, DNMT, and NQR activities can be utilized to stratify the population that is sensitive to developing post-CABG MCI.

5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2587-2598, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37058187

RESUMO

Cerebral ischemia reperfusion injury (CIR) is one of the clinical manifestations encountered during the management of stroke. High prevalence of intracranial arterial calcification is reported in stroke patients. However, the impact of vascular calcification (VC) in the outcome of CIR and the efficacy of mechanical preconditioning (IPC) and pharmacological conditioning with sodium thiosulphate (STS) in ameliorating IR remains unclear. Two experimental models namely carotid artery occlusion (n = 36) and brain slice models (n = 18) were used to evaluate the efficacy of STS in male Wistar rats. IR was inflicted in rat by occluding carotid artery for 30 min followed by 24-h reperfusion after STS (100 mg/kg) administration. Brain slice model was used to reconfirm the results to account blood brain barrier permeability. Further, brain slice tissue was utilised to evaluate the efficacy of STS in VC rat brain by measuring the histological alterations and biochemical parameters. Pre-treatment of STS prior to CIR in intact animal significantly reduced the IR-associated histopathological alterations in brain, declined oxidative stress and improved the mitochondrial function found to be similar to IPC. Brain slice model data also confirmed the neuroprotective effect of STS similar to IPC in IR challenged tissue slice. Higher tissue injury was noted in VC brain IR tissue than normal IR tissue. Therapeutic efficacy of STS was evident in VC rat brain tissues and normal tissues subjected to IR. On the other hand, IPC-mediated protection was noted only in IR normal and adenine-induced VC brain tissues not in high-fat diet (HFD) induced VC brain tissues. Based on the results, we concluded that similar to IPC, STS was effective in attenuating IR injury in CIR rat brain. Vascular calcification adversely affected the recovery protocol of brain tissues from ischemic insult. STS was found to be an effective agent in ameliorating the IR injury in both adenine and HFD induced vascular calcified rat brain, but IPC-mediated neuroprotection was absent in HFD-induced VC brain tissues.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Calcificação Vascular , Ratos , Masculino , Animais , Ratos Wistar , Traumatismo por Reperfusão/patologia , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Encéfalo/patologia , Adenina
6.
Front Cell Dev Biol ; 11: 1127594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846585

RESUMO

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) possess excellent immunomodulatory and therapeutic properties. While beneficial, from a translational perspective, extracellular vesicles with consistent functionality and target specificity are required to achieve the goals of precision medicine and tissue engineering. Prior research has identified that the miRNA composition of mesenchymal stem cell derived extracellular vesicles contributes significantly towards extracellular vesicles functionality. In this study, we hypothesized that mesenchymal stem cell derived extracellular vesicle functionality can be rendered pathway-specific using a miRNA-based extracellular vesicles engineering approach. To test this hypothesis, we utilized bone repair as a model system and the BMP2 signaling cascade as the targeted pathway. We engineered mesenchymal stem cell extracellular vesicles to possess increased levels of miR-424, a potentiator of the BMP2 signaling cascade. We evaluated the physical and functional characteristics of these extracellular vesicles and their enhanced ability to trigger the osteogenic differentiation of naïve mesenchymal stem cell in vitro and facilitate bone repair in vivo. Results indicated that the engineered extracellular vesicles retained their extracellular vesicles characteristics and endocytic functionality and demonstrated enhanced osteoinductive function by activating SMAD1/5/8 phosphorylation and mesenchymal stem cell differentiation in vitro and enhanced bone repair in vivo. Furthermore, the inherent immunomodulatory properties of the mesenchymal stem cell derived extracellular vesicles remained unaltered. These results serve as a proof-of-concept for miRNA-based extracellular vesicles engineering approaches for regenerative medicine applications.

7.
BMC Oral Health ; 23(1): 8, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611143

RESUMO

BACKGROUND: COVID-19 has impacted and increased risks for all populations, including orthodontic patients and providers. It also changes the practice management and infection control landscape in the practices. This study aimed to investigate the COVID-19 infection and vaccination status of orthodontic providers and mitigation approaches in orthodontic practices in the United States during 2021. METHODS: A validated 50-question research electronic data capture (REDCap) browser-based questionnaire was distributed to 12,393 orthodontists and pediatric dentists who reported actively providing orthodontic treatment. Questions were designed to collect demographic data of respondents, evaluate the COVID-19 mitigation approaches, and evaluate the history of COVID-19 infection and vaccination status of the orthodontic providers. Associations of demographic and the COVID-19 mitigation approaches were assessed using chi-square tests at the significance level of 0.05. RESULTS: Four hundred fifty-seven returned the survey (response rate 3.69%) for analysis. Most respondents were vaccinated, and increased infection control measures in response to the pandemic. Half of the respondents practiced teledentistry and switched to digital impression systems. Two-thirds reported difficulties in attaining PPEs due to the increased cost and scarcity of PPEs. About 6% of respondents reported a history of COVID-19 infection, and 68.9% of their staff had COVID-19 infection. Statistically significant associations were found between increased practice experience with difficulties in acquiring PPE (p = .010). There were no significant associations between races of respondents, geographic location, and years of practicing when cross-tabulated with vaccination status or COVID-19 infection rate (p > .05). CONCLUSION: Increased infection control strategies were employed in almost all orthodontic practices in addition to existing universal precaution. Most of the orthodontic providers and their staff members were vaccinated. While staff's infection rates were an issue, doctors' infection rates remained low.


Assuntos
COVID-19 , Criança , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Ortodontistas , Odontólogos , Controle de Infecções , Precauções Universais , Inquéritos e Questionários
8.
Acta Biomater ; 158: 782-797, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638942

RESUMO

Mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions. Through miRNA seq analyses, miRNA-424 was identified as a candidate for the retina to overexpress in EVs for enhancing cytoprotection and anti-inflammatory effects. FEEs (functionally engineered EVs) overexpressing miR424 (FEE424) significantly enhanced neuroprotection and anti-inflammatory activities in vitro in retinal cells. FEE424 functioned by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in retinal Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery after retinal ischemic insult. In an in vivo model of retinal ischemia, native, HPC, and FEE424 MSC EVs robustly and similarly restored function to close to baseline, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. These results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component. STATEMENT OF SIGNIFICANCE: We show that functionally engineered extracellular vesicles (FEEs) from mesenchymal stem cells (MSCs) provide cytoprotection in rat retina subjected to ischemia. FEEs overexpressing microRNA 424 (FEE424) function by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery. In an in vivo model of retinal ischemia in rats, native, hypoxic-preconditioned (HPC), and FEE424 MSC EVs robustly and similarly restored function, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. The results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Doenças Retinianas , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Isquemia/terapia , Citocinas/metabolismo , Doenças Retinianas/metabolismo , Anti-Inflamatórios , Hipóxia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Biomaterials ; 291: 121903, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410109

RESUMO

Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.


Assuntos
Osseointegração , Titânio , Osseointegração/fisiologia , Propriedades de Superfície , Osteogênese/fisiologia , Imunomodulação
10.
Cells ; 11(18)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139426

RESUMO

In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.


Assuntos
Materiais Biocompatíveis , Vesículas Extracelulares , Engenharia Tecidual , Cicatrização
11.
PLoS One ; 17(6): e0270311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737693

RESUMO

COVID-19 has impacted and increased risks for healthcare providers, including orthodontists. There is no information regarding the potential transmission risks in the orthodontic community. This study aims to compare the positivity rate of SARS-CoV-2 infection in orthodontic patients at the University of Illinois Chicago (UIC) orthodontic clinic to the positivity rate of the local population in Chicago. All orthodontic patients who sought treatment at the UIC orthodontic clinic from June 16 to October 31, 2021, were invited to participate in the study. Three milliliters of saliva from the participants were collected in the sample collection tubes and subjected to a polymerase chain reaction (PCR) based assay to detect SAR-CoV-2. All participants' age, sex, history of COVID-19 infection, and vaccination status were recorded. The COVID-19 positivity rates of Chicago, Cook County of Illinois, and the orthodontic clinic at UIC were compared. One thousand four hundred and thirty-seven orthodontic patients aged 6 to 70 years old (41.8% males and 58.2% females) participated in the study. Among all participants, nine participants tested positive for SARS-CoV-2 (5 males and 4 females). During the study, the average COVID-19 positivity rate at the UIC orthodontic clinic was 0.626%. All of the positive participants were asymptomatic, and two of the participants had a history of COVID-19 infection. Among all positive participants, three participants had received complete COVID-19 vaccination. An increased frequency of positive cases at the orthodontic clinic was observed during the time of high positivity rate in Chicago and Cook County. A potential risk of COVID-19 transmission from patients to orthodontic providers remains, even with asymptomatic and vaccinated patients.


Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Vacinas contra COVID-19 , Chicago/epidemiologia , Criança , Feminino , Pessoal de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Front Immunol ; 13: 878194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585987

RESUMO

Mesenchymal stem cells show remarkable versatility and respond to extracellular and micro environmental cues by altering their phenotype and behavior. In this regard, the MSC's immunomodulatory properties in tissue repair are well documented. The paracrine effects of MSCs in immunomodulation are, in part, attributable to their secreted extracellular vesicles (EVs). When MSCs migrate to the wound bed, they are exposed to a myriad of inflammatory signals. To understand their response to an inflammatory environment from an EV perspective, we sought to evaluate the effects of the inflammatory cytokine TNFα on MSC EV mediated immunomodulation. Our results indicate that while the physical characteristics of the EVs remain unchanged, the TNFα preconditioned MSC EVs possess enhanced immunomodulatory properties. In vitro experiments using polarized (M1 and M2) primary mouse macrophages indicated that the preconditioned MSC EVs suppressed pro-inflammatory (M1) markers such as IL-1ß and iNOS and elevated reparatory (M2) markers such as Arg1 and CD206. When evaluated in vivo in a rat calvarial defect model, the TNFα preconditioned MSC EVs reduced inflammation at 1-, 3- and 7-days post wounding resulting in the subsequent enhanced bone formation at 4- and 8-weeks post wounding possibly by modulation of oncostatin M (OSM) expression. An analysis of EV miRNA composition revealed significant changes to anti-inflammatory miRNAs in the preconditioned MSC EVs hinting at a possible role for EV derived miRNA in the enhanced immunomodulatory activity. Overall, these results indicate that MSC exposure to inflammatory signals influence the MSC EV's immunomodulatory function in the context of tissue repair. The specific function of TNFα preconditioned MSC EV miRNAs in immunomodulatory control of bone regeneration merits further investigation.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Regeneração Óssea , Vesículas Extracelulares/metabolismo , Imunomodulação , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
13.
Sci Rep ; 12(1): 2042, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132159

RESUMO

Stem cells with the ability to differentiate into a variety of cells and secrete nerve regeneration factors have become an emerging option in nerve regeneration. Dental pulp stem cells (DPSCs) appear to be a good candidate for nerve regeneration given their accessibility, neural crest origin, and neural repair qualities. We have recently demonstrated that the complement C5a system, which is an important mediator of inflammation and tissue regeneration, is activated by lipoteichoic acid-treated pulp fibroblasts, and governs the production of brain-derived nerve growth factor (BDNF). This BDNF secretion promotes neurite outgrowth towards the injury site. Here, we extend our observation to DPSCs and compare their neurogenic ability to bone marrow-derived mesenchymal stem cells (BM-MSCs) under inflammatory stimulation. Our ELISA and immunostaining data demonstrate that blocking the C5a receptor (C5aR) reduced BDNF production in DPSCs, while treatment with C5aR agonist increased the BDNF expression, which suggests that C5aR has a positive regulatory role in the BDNF modulation of DPSCs. Inflammation induced by lipopolysaccharide (LPS) treatment potentiated this effect and is C5aR dependent. Most important, DPSCs produced significantly higher levels of C5aR-mediated BDNF compared to BM-MSCs. Taken together, our data reveal novel roles for C5aR and inflammation in modulation of BDNF and NGF in DPSCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Polpa Dentária/citologia , Fator de Crescimento Neural/metabolismo , Receptor da Anafilatoxina C5a/fisiologia , Células-Tronco/metabolismo , Humanos , Lipopolissacarídeos , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa/genética , Células-Tronco/fisiologia
14.
J Bioact Compat Polym ; 37(3): 220-230, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37465414

RESUMO

Aim: Grape seed extract contains a complex mixture of proanthocyanidins (PACs), a plant biopolymer used as a biomaterial to improve reparative and preventive dental therapies. Co-polymerization of PACs with type I collagen mechanically reinforces the dentin extracellular matrix. This study assessed the biocompatibility of PACs from grape seed extract on dental pulp stem cells (DPSCs) in a model simulating leaching through dentin to the pulp cavity. The aim was to determine the type of PACs (galloylated vs. non-galloylated) within grape seed extract that are most compatible with dental pulp tissue. Methodology: Human demineralized dentin was treated with selectively-enriched dimeric PACs prepared from grape seed extract using liquid-liquid chromatography. DPSCs were cultured within a 2D matrix and exposed to PAC-treated dentin extracellular matrix. Cell proliferation was measured using the MTS assay and expression of odontoblastic genes was analyzed by qRT-PCR. Categorization of PACs leaching from dentin was performed using HPLC-MS. Results: Enriched dimeric fractions containing galloylated PACs increased the expression of certain odontoblastic genes in DPSCs, including Runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP2), basic fibroblast growth factor (FGF2), dentin sialophosphoprotein (DSPP) and collagen, type I, alpha 1 (COLI). Galloylated dimeric PACs also exhibited minor effects on DPSC proliferation, resulting in a decrease compared to control after five days of treatment. The non-galloylated dimer fraction had no effect on these genes or on DPSC proliferation. Conclusions: Galloylated PACs are biocompatible with DPSCs and may exert a beneficial effect on cells within dental pulp tissue. The observed increase in odontoblastic genes induced by galloylated PACs together with a decrease in DPSC proliferation is suggestive of a shift toward cell differentiation. This data supports the use of dimeric PACs as a safe biomaterial, with galloylated dimeric PACs exhibiting potential benefits to odontoblasts supporting dentin regeneration.

15.
Stem Cell Res Ther ; 12(1): 594, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863294

RESUMO

BACKGROUND: Optic neuritis (ON) is frequently encountered in multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein associated disease, and other systemic autoimmune disorders. The hallmarks are an abnormal optic nerve and inflammatory demyelination; episodes of optic neuritis tend to be recurrent, and particularly for neuromyelitis optica spectrum disorder, may result in permanent vision loss. MAIN BODY: Mesenchymal stem cell (MSC) therapy is a promising approach that results in remyelination, neuroprotection of axons, and has demonstrated success in clinical studies in other neuro-degenerative diseases and in animal models of ON. However, cell transplantation has significant disadvantages and complications. Cell-free approaches utilizing extracellular vesicles (EVs) produced by MSCs exhibit anti-inflammatory and neuroprotective effects in multiple animal models of neuro-degenerative diseases and in rodent models of multiple sclerosis (MS). EVs have potential to be an effective cell-free therapy in optic neuritis because of their anti-inflammatory and remyelination stimulating properties, ability to cross the blood brain barrier, and ability to be safely administered without immunosuppression. CONCLUSION: We review the potential application of MSC EVs as an emerging treatment strategy for optic neuritis by reviewing studies in multiple sclerosis and related disorders, and in neurodegeneration, and discuss the challenges and potential rewards of clinical translation of EVs including cell targeting, carrying of therapeutic microRNAs, and prolonging delivery for treatment of optic neuritis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Neuromielite Óptica , Neurite Óptica , Animais , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/complicações , Neurite Óptica/complicações , Neurite Óptica/terapia
16.
Cells ; 10(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806128

RESUMO

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC's paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Retina/citologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fluorescência , Humanos , Injeções Intravítreas , Cinética , Células-Tronco Mesenquimais/citologia , Microglia/citologia , Microglia/metabolismo , Ratos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo , Coloração e Rotulagem
17.
Acta Biomater ; 126: 199-210, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741538

RESUMO

Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) in their naïve and engineered forms have emerged as potential alternatives to stem cell therapy. While they have a defined therapeutic potential, the spatial and temporal control of their activity in vivo remains a challenge. The objective of this study was to devise a methodology to encapsulate EVs in 3D hydrogels for prolonged delivery. To achieve this, we have leveraged the MSC EV interactions with ECM proteins and their derivative peptides. Using osteoinductive functionally engineered EVs (FEEs) derived from MSCs, we show that FEEs bind to mimetic peptides from collagen (DGEA, GFPGER) and fibronectin (RGD). In in vitro experiments, photocrosslinkable alginate hydrogels containing RGD were able to encapsulate, tether and retain the FEEs over a period of 7 days while maintaining the structural integrity and osteoinductive functionality of the EVs. When employed in a calvarial defect model in vivo, alginate-RGD hydrogels containing the FEEs enhanced bone regeneration by a factor of 4 compared to controls lacking FEEs and by a factor of 2 compared to controls lacking the tethering peptide. These results show that EVs can be tethered to biomaterials to promote bone repair and the importance of prolonged delivery in vivo. Results also provide a prelude to the possible use of this technology for controlled delivery of EVs for other regenerative medicine applications. STATEMENT OF SIGNIFICANCE: The beneficial effects of human MSC (HMSC) therapy are attributable to paracrine effects of the HMSC derived EVs. While EV engineering has the potential to impact several fields of regenerative medicine, targeted delivery of the engineered EVs with spatial and temporal control is necessary to prevent off-target effects and enhance tissue specificity. Here, we have leveraged the interactions of MSC EVs with ECM proteins to develop a tethering system that can be utilized to prolong EV delivery in vivo while maintaining the structural and functional integrity of the EVs. Our work has provided a tunable platform for EV delivery that we envision can be formulated as an injectable material or a bulk hydrogel suitable for regenerative medicine applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Regeneração Óssea , Humanos , Hidrogéis , Medicina Regenerativa
18.
Sci Rep ; 11(1): 5953, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723364

RESUMO

The differentiation of osteoblasts is under complex regulation that includes autocrine and paracrine signaling from MSCs. Exosomes are important components of the MSC secretome and their cargo contains numerous miRNAs. In this study, the importance of MSC miRNAs in modulation of osteoblastic differentiation was examined by global reduction of miRNA biosynthesis in Dicer knock down hMSCs. We additionally impaired hMSC responses to miRNAs by knockdown of Argonaute 2 expression. Knockdown of Dicer and Argonaute 2 both reduced osteoblastic differentiation of hMSCs. This was observed at the levels of hMSC culture mineralization and osteoblastic gene expression. The treatment of Dicer deficient hMSCs with wild type hMSC exosomes effectively recovered the impaired osteoblastic differentiation. Dicer knockdown reduced the quantity and diversity of miRNAs present in hMSC exosomes. miRSeq data and KEGG analysis implicated the miRNA-dependent effects on multiple osteoinductive pathways in Dicer deficient cells, including the Hippo signaling and TGF-beta signaling pathways. Treatment of hMSCs with mimics of miRNAs significantly downregulated in Dicer knockdown cells recovered functions of exosome-mediated signaling in hMSCs. These results indicate that hMSC exosomes exert miRNA-dependent control that contributes to osteoblastic differentiation.


Assuntos
Diferenciação Celular/genética , Exossomos/metabolismo , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/metabolismo , Osteogênese/genética , Fosforilação , Interferência de RNA , Transdução de Sinais , Proteínas Smad/metabolismo
19.
J Biochem Mol Toxicol ; 34(12): e22606, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32865837

RESUMO

One of the common negative impacts in the management of acute myocardial infarction is cognitive decline. Using the rat model of isoproterenol (ISO)-induced myocardial infarction, we assessed the cardioprotective effect of sodium thiosulfate (STS) and its influence on cognition. STS treatment reduced the cardiac infarct size by 75%, injury markers (lactate dehydrogenase: 60%, creatine kinase-muscle/brain: 44%) release in the blood, maintain the heart rate within a normal range (365 ± 10 bpm) and minimize postinfarction hypertrophic changes in comparison with the ISO group. At the cellular level, the heart from these rats had reduced reactive oxygen species (ROS) (25%), caspase-9 (60%), and improved mitochondrial function (restored electron transport chain function and copy number) compared to ISO hearts. The brain of STS-treated rats also showed a reduction in ROS (45%), caspase-9 (37%), and improved mitochondrial function relative to the brain of the ISO group, particularly limited to the striatum region, and these rats showed improved cognitive ability. Predominantly, the STS treatment reduced the reference memory defects observed in comparison to rats challenged by ISO. Furthermore, elevated circulating mitochondrial DNA and ATP were found in ISO-challenged rats, which indicate the cardiac mitochondria linked damage-associated patterns were restored to the sham level when pretreated with STS. We found increased H2 S, a well-known metabolite of STS with a neuroprotective role in the brain after STS administration, hinting at a possible secondary defense mechanism. In conclusion, the STS mediated cardioprotection and its nootropic effects are primarily mediated via the improvement of mitochondrial function and reduction of oxidative stress.


Assuntos
Coração/efeitos dos fármacos , Isoproterenol/toxicidade , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Tiossulfatos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Sulfeto de Hidrogênio/metabolismo , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiossulfatos/farmacologia
20.
Bone ; 141: 115627, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891867

RESUMO

Multiple local and systemic factors including inflammation influence bone regeneration. Several lines of evidence demonstrate that macrophages contribute to the immunological regulation of MSC and osteoblast function during bone regeneration. Recent studies demonstrate that macrophage polarization influences this regulatory process. In this manuscript, we investigated the paracrine functional role of naïve (M0), M1 and M2 polarized macrophage derived EVs in bone repair. Treatment of rat calvaria defects with no EVs, M0 EVs, M1 EVs, or M2 EVs revealed polarization-specific control of bone regeneration by macrophage EVs at 3 and 6 weeks. M0 and M2 EVs promoted repair/regeneration and M1 EVs inhibited bone repair. Pathway-specific studies conducted in cell culture showed that M1 EVs negatively regulated the BMP signaling pathway, specifically BMP2 and BMP9. In parallel, miRNA sequencing studies showed similar miRNA cargo in M0 and M2 EVs and different miRNA cargo in M1 EVs. Functional examination of M1 macrophage EV-enriched miR-155 demonstrated that miR-155 mimic treatment reduced MSC osteogenic differentiation as measured by reduced BMP2, BMP9 and RUNX2 expression when compared to controls. Conversely, treatment of MSCs with the M2 macrophage EV-enriched miR-378a mimic increased MSC osteoinductive gene expression when compared to controls. These functional studies implicate polarized macrophage EV miRNAs in the positive or negative regulation of bone regeneration that was observed in vivo. Overall, the results presented in this study indicate that macrophage polarization influences EV cargo and related EV function in the paracrine regulation of bone regeneration.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Regeneração Óssea , Macrófagos , MicroRNAs/genética , Osteogênese , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...